hide
Free keywords:
AMINO-ACID-ANALOGS; RELEASE FACTOR RF3; SHOCK-PROTEIN 90; TRIGGER
FACTOR; ESCHERICHIA-COLI; POLYPEPTIDE FLUX; GENE-EXPRESSION;
QUALITY-CONTROL; TRANSFER-RNA; RIBOSOMEBiochemistry & Molecular Biology; Cell Biology;
Abstract:
Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.