English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate: Total Syntheses of Keramaphidin B, Ingenamine, and Nominal Njaoamine I

Meng, Z., Spohr, S. M., Tobegen, S., Farès, C., & Fürstner, A. (2021). A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate: Total Syntheses of Keramaphidin B, Ingenamine, and Nominal Njaoamine I. Journal of the American Chemical Society, 143(35), 14402-14414. doi:10.1021/jacs.1c07955.

Item is

Files

show Files
hide Files
:
ja1c07955_si_001-1.pdf (Supplementary material), 22MB
Name:
ja1c07955_si_001-1.pdf
Description:
Supporting Information
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Meng, Zhanchao1, Author           
Spohr, Simon M.1, Author           
Tobegen, Sandra2, Author           
Farès, Christophe2, Author           
Fürstner, Alois1, Author           
Affiliations:
1Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445584              
2Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445623              

Content

show
hide
Free keywords: -
 Abstract: Many polycyclic marine alkaloids are thought to derive from partly reduced macrocyclic alkylpyridine derivatives via a transannular Diels–Alder reaction that forms their common etheno-bridged diaza-decaline core (“Baldwin–Whitehead hypothesis”). Rather than trying to emulate this biosynthesis pathway, a route to these natural products following purely chemical logic was pursued. Specifically, a Michael/Michael addition cascade provided rapid access to this conspicuous tricyclic scaffold and allowed different handles to be introduced at the bridgehead quarternary center. This flexibility opened opportunities for the formation of the enveloping medium-sized and macrocyclic rings. Ring closing alkyne metathesis (RCAM) proved most reliable and became a recurrent theme en route to keramaphidin B, ingenamine, xestocyclamine A, and nominal njaoamine I (the structure of which had to be corrected in the aftermath of the synthesis). Best results were obtained with molybdenum alkylidyne catalysts endowed with (tripodal) silanolate ligands, which proved fully operative in the presence of tertiary amines, quinoline, and other Lewis basic sites. RCAM was successfully interlinked with macrolactamization, an intricate hydroboration/protonation/alkyl-Suzuki coupling sequence, or ring closing olefin metathesis (RCM) for the closure of the second lateral ring; the use of RCM for the formation of an 11-membered cycle is particularly noteworthy. Equally rare are RCM reactions that leave a pre-existing triple bond untouched, as the standard ruthenium catalysts are usually indiscriminative vis-à-vis the different π-bonds. Of arguably highest significance, however, is the use of two consecutive or even concurrent RCAM reactions en route to nominal njaoamine I as the arguably most complex of the chosen targets.

Details

show
hide
Language(s): eng - English
 Dates: 2021-07-302021-08-272021-09-08
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/jacs.1c07955
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the American Chemical Society
  Other : JACS
  Abbreviation : J. Am. Chem. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 143 (35) Sequence Number: - Start / End Page: 14402 - 14414 Identifier: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870