Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers

Saveleva, V. A., Wang, L., Kasian, O., Batuk, M., Hadermann, J., Gallet, J.-J., et al. (2020). Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 10(4), 2508-2516. doi:10.1021/acscatal.9b04449.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Saveleva, Viktoriia A.1, Autor
Wang, Li2, Autor
Kasian, Olga3, 4, Autor           
Batuk, Maria5, Autor           
Hadermann, Joke5, Autor
Gallet, Jean-Jacques6, 7, Autor
Bournel, Fabrice6, 7, Autor
Alonso-Vante, Nicolás8, Autor
Ozouf, Guillaume9, Autor
Beauger, Christian9, Autor
Mayrhofer, Karl Johann Jakob10, 11, Autor           
Cherevko, Serhiy10, Autor           
Gago, Aldo Saul2, Autor
Friedrich, K. Andreas2, 12, Autor
Zafeiratos, Spyridon1, Autor
Savinova, Elena R.1, Autor
Affiliations:
1Institut de Chimie et Procédés Pour l'Energie, L'Environnement et la Santé, UMR 7515 du CNRS - Université de Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France, ou_persistent22              
2Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany, ou_persistent22              
3Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
4Helmholtz Zentrum Berlin, Helmholtz-Institute Erlangen-Nürnberg, 14109 Berlin, Germany, ou_persistent22              
5Department of Physics, EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium, ou_persistent22              
6Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, Paris, 75005, France, ou_persistent22              
7Synchrotron-Soleil, L'Orme des Merisiers, Saint Aubin - BP48, Gif-sur-Yvette Cedex, 91192, France, ou_persistent22              
8IC2MP - UMR-CNRS 7285, Université de Poitiers, 4, rue Michel Brunet - B27 BP 633 - TSA 51106, Poitiers Cedex, F-86022, France, ou_persistent22              
9MINES ParisTech, PSL University, Centre for Processes Renewable Energy and Energy Systems (PERSEE), CS 10207, Rue Claude Daunesse, Sophia-Antipolis, Cedex, F-06904, France, ou_persistent22              
10Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
11Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              
12Institute of Building Energetics, Thermal Engineering and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 31, Stuttgart, 70569, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Aerogels; Antimony compounds; Catalysts; Electrodes; Electrolytic cells; Iridium; Mass spectrometry; Metal nanoparticles; Nanocomposites; Oxygen evolution reaction; Photoelectrons; Photons; Tin oxides; X ray photoelectron spectroscopy, Ambient-pressure x-ray photoelectron spectroscopies; Antimony-doped tin oxide; Electrocatalytic activity and stability; Ir nanoparticles; Membrane electrode assemblies; Operando; Proton exchange membranes; Reaction mechanism, Iridium compounds
 Zusammenfassung: The use of high amounts of iridium in industrial proton exchange membrane water electrolyzers (PEMWE) could hinder their widespread use for the decarbonization of society with hydrogen. Nonthermally oxidized Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 while enhancing the electrocatalytic activity and stability. To date, the origin of these benefits remains unknown. Here, we present clear evidence of the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near-ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry. The mechanisms that lead to the high activity and stability of Ir catalysts supported on SnO2:Sb aerogel for PEMWE are thus unveiled. Copyright © 2020 American Chemical Society.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-02-21
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acscatal.9b04449
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Catalysis
  Kurztitel : ACS Catal.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : ACS
Seiten: - Band / Heft: 10 (4) Artikelnummer: - Start- / Endseite: 2508 - 2516 Identifikator: ISSN: 2155-5435
CoNE: https://pure.mpg.de/cone/journals/resource/2155-5435