Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides

Mazheika, A., Wang, Y., Valero, R., Viñes, F., Illas, F., Ghiringhelli, L. M., et al. (2022). Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. Nature Communications, 13: 419. doi:10.1038/s41467-022-28042-z.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s41467-022-28042-z.pdf (Verlagsversion), 1011KB
Name:
s41467-022-28042-z.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Mazheika, Aliaksei1, Autor           
Wang, Yanggang1, 2, Autor           
Valero, Rosendo3, 4, Autor
Viñes, Francesc3, Autor
Illas, Francesc3, Autor
Ghiringhelli, Luca M.1, 5, Autor           
Levchenko, Sergey V.6, Autor
Scheffler, Matthias1, 5, Autor           
Affiliations:
1NOMAD, Fritz Haber Institute, Max Planck Society, ou_3253022              
2Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China, ou_persistent22              
3Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, Barcelona, 08028, Spain, ou_persistent22              
4Zhejiang Huayou Cobalt Co.,Ltd., No. 18 Wuzhen East Road, Tongxiang Economic Development Zone, 314500, Jiaxing, Zhejiang, China, ou_persistent22              
5The NOMAD Laboratory at the Humboldt University of Berlin, 12489, Berlin, Germany, ou_persistent22              
6Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO2 conversion.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-08-252022-01-032022-01-20
 Publikationsstatus: Online veröffentlicht
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41467-022-28042-z
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : NOMAD CoE - Novel materials for urgent energy, environmental and societal challenges
Grant ID : 951786
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 13 Band / Heft: 13 Artikelnummer: 419 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723