English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Emergent conformational properties of end-tailored transversely propelling polymers

Kokkoorakunnel, R., Ziebert, F., & Golestanian, R. (2022). Emergent conformational properties of end-tailored transversely propelling polymers. Soft Matter, 18, 2928-2935. doi:10.1039/D2SM00237J.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kokkoorakunnel, Ramankutty1, Author           
Ziebert, Falko, Author
Golestanian, Ramin1, Author                 
Affiliations:
1Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2570692              

Content

show
hide
Free keywords: -
 Abstract: We study the dynamics and conformations of a single active semiflexible polymer whose monomersexperience a propulsion force perpendicular to the local tangent, with the end beads being differentfrom the inner beads (“end-tailored”). Using Langevin simulations, we demonstrate that, apart fromsideways motion, the relative propulsion strength between the end beads and the polymer backbonesignificantly changes the conformational properties of the polymers as a function of bending stiffness,end-tailoring and propulsion force. Expectedly, for slower ends the polymer curves away from themoving direction, while faster ends lead to opposite curving, in both cases slightly reducing thecenter of mass velocity compared to a straight fiber. Interestingly, for faster end beads there is arich and dynamic morphology diagram: the polymer ends may get folded together to 2D loops orhairpin-like conformations that rotate due to their asymmetry in shape and periodic flapping motionaround a rather straight state during full propulsion is also possible. We rationalize the simulationsusing scaling and kinematic arguments and present the state diagram of the conformations. Sidewayspropelled fibers comprise a rather unexplored and versatile class of self-propellers, and their studywill open novel ways for designing, e.g. motile actuators or mixers in soft robotic.

Details

show
hide
Language(s):
 Dates: 2022-03-22
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/D2SM00237J
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Soft Matter
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 18 Sequence Number: - Start / End Page: 2928 - 2935 Identifier: ISSN: 1744-683X
ISSN: 1744-6848