Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  PentaSim : a numerical simulation of a Penning Trap

Herzog, F. S. (2022). PentaSim: a numerical simulation of a Penning Trap. Master Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift

Dateien

einblenden: Dateien
ausblenden: Dateien
:
HerzogSebastianFelix_Masterarbeit.pdf (beliebiger Volltext), 2MB
Name:
HerzogSebastianFelix_Masterarbeit.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Herzog, Felix Sebastian1, Autor           
Affiliations:
1Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society, ou_904548              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPINP: Präzisionsexperimente - Abteilung Blaum
 Zusammenfassung: Numerical simulations have proven to be an effective approach for studying ion trajectories
for different types of mass spectrometers. PentaSim, developed in this work, is a
modular tool for numerical simulation of a single ion in ideal and cylindrical Penning-trap
experiments.
The tool uses a polynomial expansion of the electric potentials and magnetic field to allow
the calculation of trajectories for different settings that are not constrained by cylindrical
symmetry. In particular, realistic maps of the electric potential, e.g. from Finite Element
Method calculations can be imported. Therefore, PentaSim is a promising framework for
the investigation of systematic effects induced by machining imperfections and higher
order terms of the electric potential and magnetic field with the goal of enhancing the
sensitivity of state-of-the-art mass spectrometry experiments such as Pentatrap. In
addition, the option to incorporate high-frequency excitation and conversion pulses of
any form in the simulation could be leveraged to probe new measurement techniques.
The accuracy of the simulation predictions were benchmarked against established theory.
Relative residuals below 10−8 and 10−13 were obtained using a simulation time
step of 10−12 s for the fast modified cyclotron frequency and slow magnetron frequency,
respectively.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022
 Publikationsstatus: Angenommen
 Seiten: 42 S.
 Ort, Verlag, Ausgabe: Heidelberg : Ruprecht-Karls-Universität
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: Master

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: