Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Deep learning identifies and quantifies recombination hotspot determinants

Li, Y., Chen, S., Rapakoulia, T., Kuwahara, H., Yip, K. Y., & Gao, X. (2022). Deep learning identifies and quantifies recombination hotspot determinants. Bioinformatics, 38(10), 2683-2691. doi:10.1093/bioinformatics/btac234.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Bioinformatics_Li etal_2022.pdf (Verlagsversion), 7MB
Name:
Bioinformatics_Li et al_2022.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© The Author(s) 2022
:
btac234_supplementary_data.pdf (Ergänzendes Material), 3MB
Name:
btac234_supplementary_data.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© The Author(s) 2022

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Yu, Autor
Chen, Siyuan , Autor
Rapakoulia, Trisevgeni1, Autor           
Kuwahara, Hiroyuki , Autor
Yip, Kevin Y. , Autor
Gao, Xin, Autor
Affiliations:
1Transcriptional Regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479639              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Motivation: Recombination is one of the essential genetic processes for sexually reproducing organisms, which can happen more frequently in some regions, called recombination hotspots. Although several factors, such as PRDM9 binding motifs, are known to be related to the hotspots, their contributions to the recombination hotspots have not been quantified, and other determinants are yet to be elucidated. Here, we propose a computational method, RHSNet, based on deep learning and signal processing, to identify and quantify the hotspot determinants in a purely data-driven manner, utilizing datasets from various studies, populations, sexes, and species.

Results: RHSNet can significantly outperforms other sequence-based methods on multiple datasets across different species, sexes, and studies. In addition to being able to identify hotspot regions and the well-known determinants accurately, more importantly, RHSNet can quantify the determinants that contribute significantly to the recombination hotspot formation in the relation between PRDM9 binding motif, histone modification, and GC content. Further cross-sex, cross-population, and cross-species studies suggest that the proposed method has the generalization power and potential to identify and quantify the evolutionary determinant motifs.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-04-082022-04-122022-05-13
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/bioinformatics/btac234
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford University Press
Seiten: - Band / Heft: 38 (10) Artikelnummer: - Start- / Endseite: 2683 - 2691 Identifikator: ISSN: 1367-4803
CoNE: https://pure.mpg.de/cone/journals/resource/954926969991