English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Atomic scale evolution of the surface chemistry in Li[Ni,Mn,Co]O2 cathode for Li-ion batteries stored in air

Singh, M. P., Kim, S.-H., Zhou, X., Kwak, H., Antonov, S., Aota, L. S., et al. (2022). Atomic scale evolution of the surface chemistry in Li[Ni,Mn,Co]O2 cathode for Li-ion batteries stored in air. Condensed Matter: Materials Science. doi:10.48550/arXiv.2207.11979.

Item is

Files

show Files
hide Files
:
2207.11979.pdf (Preprint), 3MB
Name:
2207.11979.pdf
Description:
Open Access
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Singh, Mahander Pratap1, Author           
Kim, Se-Ho1, Author           
Zhou, Xuyang1, Author           
Kwak, Hiram2, Author
Antonov, Stoichko3, Author           
Aota, Leonardo Shoji4, Author           
Jung, Chanwon5, Author           
Jung, Yoon Seok2, Author
Gault, Baptiste1, 6, Author           
Affiliations:
1Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
2Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea, ou_persistent22              
3National Energy Technology Laboratory, Albany, Oregon, USA, ou_persistent22              
4Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
5Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
6Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Layered LiMO2 (M = Ni, Co, Mn, and Al mixture) cathode materials used for Li-ion batteries are reputed to be highly reactive through their surface, where the chemistry changes rapidly when exposed to ambient air. However, conventional electron/spectroscopy-based techniques or thermogravimetric analysis fails to capture the underlying atom-scale chemistry of vulnerable Li species. To study the evolution of the surface composition at the atomic scale, here we use atom probe tomography and probed the surface species formed during exposure of a LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material to air. The compositional analysis evidences the formation of Li2CO3. Site specific examination from a cracked region of an NMC811 particle also suggests the predominant presence of Li2CO3. These insights will help to design improved protocols for cathode synthesis and cell assembly, as well as critical knowledge for cathode degradation

Details

show
hide
Language(s): eng - English
 Dates: 2022-07-252022-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.48550/arXiv.2207.11979
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Condensed Matter: Materials Science
  Abbreviation : cond-mat.mtrl-sci
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: arXiv:1701.06694
CoNE: https://pure.mpg.de/cone/journals/resource/arXiv:1701.06694