English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic scale evolution of the surface chemistry in Li[Ni,Mn,Co]O2 cathode for Li-ion batteries stored in air

MPS-Authors
/persons/resource/persons276633

Singh,  Mahander Pratap
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons243126

Kim,  Se-Ho
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons249272

Zhou,  Xuyang
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons256446

Aota,  Leonardo Shoji
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons269833

Jung,  Chanwon
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2207.11979.pdf
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Singh, M. P., Kim, S.-H., Zhou, X., Kwak, H., Antonov, S., Aota, L. S., et al. (2022). Atomic scale evolution of the surface chemistry in Li[Ni,Mn,Co]O2 cathode for Li-ion batteries stored in air. Condensed Matter: Materials Science. doi:10.48550/arXiv.2207.11979.


Cite as: https://hdl.handle.net/21.11116/0000-000A-CE62-0
Abstract
Layered LiMO2 (M = Ni, Co, Mn, and Al mixture) cathode materials used for Li-ion batteries are reputed to be highly reactive through their surface, where the chemistry changes rapidly when exposed to ambient air. However, conventional electron/spectroscopy-based techniques or thermogravimetric analysis fails to capture the underlying atom-scale chemistry of vulnerable Li species. To study the evolution of the surface composition at the atomic scale, here we use atom probe tomography and probed the surface species formed during exposure of a LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material to air. The compositional analysis evidences the formation of Li2CO3. Site specific examination from a cracked region of an NMC811 particle also suggests the predominant presence of Li2CO3. These insights will help to design improved protocols for cathode synthesis and cell assembly, as well as critical knowledge for cathode degradation