English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Physiochemical hydrodynamics of the phase segregation in an evaporating binary microdroplet

Li, Y., Lv, P., Diddens, C., & Lohse, D. (2022). Physiochemical hydrodynamics of the phase segregation in an evaporating binary microdroplet. Journal of Fluid Mechanics, 946: A37. doi:10.1017/jfm.2022.614.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Li, Yaxing, Author
Lv, Pengyu, Author
Diddens, Christian, Author
Lohse, Detlef1, Author           
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Content

show
hide
Free keywords: -
 Abstract: Phase segregation triggered by selective evaporation can emerge in multicomponent systems, leading to complex physiochemical hydrodynamics. Recently, Li et al. (Phys. Rev. Lett., vol. 120, 2018, 224501) and Kim & Stone (J. Fluid Mech., vol. 850, 2018, pp. 769–783 ) reported a segregative behaviour (i.e. demixing) in an evaporating binary droplet. In this work, by means of experiments and theoretical analysis, we investigate the f low dynamics after 1, 2the occur rence of the phase seg re hexanediol–water binary droplet system. First, we ga tion. As example, we take the reveal https://doi.org/10.1017/jfm.2022.614 Published online by Cambridge University Press exper i men tally the overall physiochemical hydrodynamics of the evaporation process, including the segregative behaviour and the resulting flow structure close to the substrate. By quantifying the evolution of the radial flow, we identify three successive life stages of the evaporation process. At Stage I, a radially outward flow is observed , driven by the Marangoni effect. At the transition to Stage II, the radial flow reverses par tially, starting from the contact line. This flow breaks the axial symmetry and remarkably is driven by the segregation itself. Finally at Stage III, the flow decays as the evaporation ceases stage grad u ally. At this , the segregation has grown to the entire droplet, and the flow is again controlled by the Marangoni effect. The resulting Marangoni flow homogenizes the distribution of the entrapped volatile water over the whole droplet.

Details

show
hide
Language(s): eng - English
 Dates: 2022-08-112022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1017/jfm.2022.614
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Fluid Mechanics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 18 Volume / Issue: 946 Sequence Number: A37 Start / End Page: - Identifier: ISSN: 0022-1120
ISSN: 1469-7645