Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Testing the effect of depth on the perception of faces in an online study

Hofmann, S., Koushik, A., Klotzsche, F., Nikulin, V. V., Villringer, A., & Gaebler, M. (2022). Testing the effect of depth on the perception of faces in an online study. In Proceedings of the 2022 Conference on Cognitive Computational Neuroscience.

Item is

Basisdaten

ausblenden:
Genre: Konferenzbeitrag

Dateien

ausblenden: Dateien
:
2022-08-25_CCN_Poster_FaceSim_Hofmann-et-al_TwitterQR.pdf (beliebiger Volltext), 2MB
Name:
2022-08-25_CCN_Poster_FaceSim_Hofmann-et-al_TwitterQR.pdf
Beschreibung:
Poster
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Hofmann, Simon1, Autor                 
Koushik, Abhay1, 2, Autor                 
Klotzsche, Felix1, Autor                 
Nikulin, Vadim V.1, Autor                 
Villringer, Arno1, Autor                 
Gaebler, Michael1, Autor                 
Affiliations:
1Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              
2Max Planck School of Cognition, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: 3D perception; face space; similarity judgements; RSA; encoding models
 Zusammenfassung: Faces are socially relevant stimuli that can be distinguished by the spatial arrangements of their visual features. However, face perception has been mostly investigated with static 2D images, which differs from everyday life experience. In an online study, we investigate face perception in two viewing conditions (2D & 3D). We compare the cognitive face space for these conditions, by modeling the acquired human similarity ratings with similarity matrices computed from physical face attributes and feature maps of deep learning-based face recognition models. Lastly, we fit these models to the human similarity judgements to explore relevant facial features between the viewing conditions. Unveiling differences between 2D and 3D perception of faces will further our understanding on the role of stimulus presentation on face processing.

Details

ausblenden:
Sprache(n):
 Datum: 2022-08-25
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.32470/CCN.2022.1254-0
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: Conference on Cognitive Computational Neuroscience (CCN)
Veranstaltungsort: San Francisco
Start-/Enddatum: 2022-08-25 - 2022-08-28

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Proceedings of the 2022 Conference on Cognitive Computational Neuroscience
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -