Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  AI for predicting chemical-effect associations at the chemical universe level – deepFPlearn

Schor, J., Scheibe, P., Bernt, M., Busch, W., Lai, C., & Hackermüller, J. (2022). AI for predicting chemical-effect associations at the chemical universe level – deepFPlearn. bioRxiv. doi:10.1101/2021.06.24.449697.

Item is

Dateien

ausblenden: Dateien
:
Schor_pre.pdf (Preprint), 2MB
Name:
Schor_pre.pdf
Beschreibung:
-
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Schor, Jana, Autor
Scheibe, Patrick1, 2, 3, Autor           
Bernt, Matthias, Autor
Busch, Wibke, Autor
Lai, Chih, Autor
Hackermüller, Jörg, Autor
Affiliations:
1Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634550              
2External Organizations, ou_persistent22              
3Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205649              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Many chemicals are out there in our environment, and all living species are exposed. However, numerous chemicals pose risks, such as developing severe diseases, if they occur at the wrong time in the wrong place. For the majority of the chemicals, these risks are not known. Chemical risk assessment and subsequent regulation of use require efficient and systematic strategies. Lab-based methods – even if high throughput – are too slow to keep up with the pace of chemical innovation. Existing computational approaches are designed for specific chemical classes or sub-problems but not usable on a large scale. Further, the application range of these approaches is limited by the low amount of available labeled training data.We present the ready-to-use and stand-alone program deepFPlearn that predicts the association between chemical structures and effects on the gene/pathway level using a combined deep learning approach. deepFPlearn uses a deep autoencoder for feature reduction before training a deep feedforward neural network to predict the target association. We received good prediction qualities and showed that our feature compression preserves relevant chemical structural information. Using a vast chemical inventory (unlabeled data) as input for the autoencoder did not reduce our prediction quality but allowed capturing a much more comprehensive range of chemical structures. We predict meaningful - experimentally verified-associations of chemicals and effects on unseen data. deepFPlearn classifies hundreds of thousands of chemicals in seconds.We provide deepFPlearn as an open-source and flexible tool that can be easily retrained and customized to different application settings at https://github.com/yigbt/deepFPlearn.Supplementary information Supplementary data are available at bioRxiv online.Contact jana.schor{at}ufz.deCompeting Interest StatementThe authors have declared no competing interest.

Details

ausblenden:
Sprache(n):
 Datum: 2022-04-21
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1101/2021.06.24.449697
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: bioRxiv
Genre der Quelle: Webseite
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -