Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Assessing Deep Generative Models in Chemical Composition Space

Türk, H., Landini, E., Kunkel, C., Margraf, J., & Reuter, K. (2022). Assessing Deep Generative Models in Chemical Composition Space. Chemistry of Materials, 34(21), 9455-9467. doi:10.1021/acs.chemmater.2c01860.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
acs.chemmater.2c01860.pdf (Verlagsversion), 4MB
Name:
acs.chemmater.2c01860.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Türk, Hanna1, Autor           
Landini, Elisabetta, Autor
Kunkel, Christian1, Autor           
Margraf, Johannes1, Autor           
Reuter, Karsten1, Autor           
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The computational discovery of novel materials has been one of the main motivations behind research in theoretical chemistry for several decades. Despite much effort, this is far from a solved problem, however. Among other reasons, this is due to the enormous space of possible structures and compositions that could potentially be of interest. In the case of inorganic materials, this is exacerbated by the combinatorics of the periodic table since even a single-crystal structure can in principle display millions of compositions. Consequently, there is a need for tools that enable a more guided exploration of the materials design space. Here, generative machine learning models have recently emerged as a promising technology. In this work, we assess the performance of a range of deep generative models based on reinforcement learning, variational autoencoders, and generative adversarial networks for the prototypical case of designing Elpasolite compositions with low formation energies. By relying on the fully enumerated space of 2 million main-group Elpasolites, the precision, coverage, and diversity of the generated materials are rigorously assessed. Additionally, a hyperparameter selection scheme for generative models in chemical composition space is developed.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-10-052022-06-222022-10-192022-11-08
 Publikationsstatus: Erschienen
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.chemmater.2c01860
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chemistry of Materials
  Kurztitel : Chem. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: 13 Band / Heft: 34 (21) Artikelnummer: - Start- / Endseite: 9455 - 9467 Identifikator: ISSN: 0897-4756
CoNE: https://pure.mpg.de/cone/journals/resource/954925561571