Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Adapting to noise distribution shifts in flow-based gravitational-wave inference

Wildberger, J., Dax, M., Green, S., Gair, J., Pürrer, M., Macke, J. H., et al. (2023). Adapting to noise distribution shifts in flow-based gravitational-wave inference. Physical Review D, 107(8): 084046. doi:10.1103/PhysRevD.107.084046.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
2211.08801.pdf (Preprint), 2MB
Name:
2211.08801.pdf
Beschreibung:
File downloaded from arXiv at 2022-11-24 11:37
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PhysRevD.107.084046.pdf (Verlagsversion), 3MB
Name:
PhysRevD.107.084046.pdf
Beschreibung:
Open Access
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Wildberger , Jonas, Autor
Dax , Maximilian, Autor
Green, Stephen1, Autor           
Gair, Jonathan1, Autor           
Pürrer, Michael1, Autor           
Macke , Jakob H., Autor
Buonanno, Alessandra1, Autor           
Schölkopf, Bernhard, Autor
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Inhalt

ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc, Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM,Computer Science, Learning, cs.LG
 Zusammenfassung: Deep learning techniques for gravitational-wave parameter estimation have
emerged as a fast alternative to standard samplers $\unicode{x2013}$ producing
results of comparable accuracy. These approaches (e.g., DINGO) enable amortized
inference by training a normalizing flow to represent the Bayesian posterior
conditional on observed data. By conditioning also on the noise power spectral
density (PSD) they can even account for changing detector characteristics.
However, training such networks requires knowing in advance the distribution of
PSDs expected to be observed, and therefore can only take place once all data
to be analyzed have been gathered. Here, we develop a probabilistic model to
forecast future PSDs, greatly increasing the temporal scope of DINGO networks.
Using PSDs from the second LIGO-Virgo observing run (O2) $\unicode{x2013}$ plus
just a single PSD from the beginning of the third (O3) $\unicode{x2013}$ we
show that we can train a DINGO network to perform accurate inference throughout
O3 (on 37 real events). We therefore expect this approach to be a key component
to enable the use of deep learning techniques for low-latency analyses of
gravitational waves.

Details

ausblenden:
Sprache(n):
 Datum: 2022-11-162023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2211.08801
DOI: 10.1103/PhysRevD.107.084046
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Review D
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 107 (8) Artikelnummer: 084046 Start- / Endseite: - Identifikator: -