Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading

Sun, H., Li, L., Chen, Y., Kim, H., Xu, X., Guan, D., et al. (2023). Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Applied Catalysis B: Environmental, 325: 122388, pp. 1-10. doi:10.1016/j.apcatb.2023.122388.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sun, Hainan1, Autor
Li, Lili1, Autor
Chen, Yahui1, Autor
Kim, Hyunseung1, Autor
Xu, Xiaomin1, Autor
Guan, Daqin1, Autor
Hu, Zhiwei2, Autor           
Zhang, Linjuan1, Autor
Shao, Zongping1, Autor
Jung, WooChul1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Anodes, Anodic oxidation, Copper oxides, Density functional theory, Electrocatalysts, Electrolysis, Electrolytes, Energy conservation, Ethanol, Nickel compounds, Transition metals, 3d transition metals, Energy savings, Energy-savings, Ethanol oxidation, Ethanol oxidation reaction, Nano-heterostructures, Reaction performance, Reactions in water, Value-added chemicals, Water electrolysis, Hydrogen production, 3d transition metal, Ethanol oxidation reaction, Hydrogen production, Nano-heterostructure, Value-added chemicals
 Zusammenfassung: Substituting the anodic oxygen evolution reaction in water electrolysis with a thermodynamically more favorable ethanol oxidation reaction (EOR) provides a promising route for simultaneous biomass upgrading and energy-saving hydrogen production. Herein, we synthesize a NiOOH-CuO nano-heterostructure anchored on a three-dimensional conductive Cu foam, which exhibits remarkable EOR performance, surpassing all the state-of-the-art 3d transition-metal-based EOR electrocatalysts. Density functional theory reveals that the coupling between CuO and NiOOH by charge redistribution at the interface is critical, synergistically reducing the EOR energy barriers into an energetically favorable pathway. Conclusively, the hybrid water electrolysis cell using our catalyst as the anode (1) requires only a low cell voltage for H2 generation at the cathode and only liquid chemical production of acetate at the anode, and (2) shows a high ethanol conversion rate to acetate, which can readily be separated from the aqueous electrolyte by subsequent acidification and extraction processes. © 2023

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-05-152023-05-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.apcatb.2023.122388
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Applied Catalysis B: Environmental
  Kurztitel : Appl. Catal. B Environ.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 325 Artikelnummer: 122388 Start- / Endseite: 1 - 10 Identifikator: ISSN: 0926-3373
CoNE: https://pure.mpg.de/cone/journals/resource/954928540173