Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modelling the Large and Dynamically Growing Bipartite Network of German Patents and Inventors

Fritz, C., De Nicola, G., Kevork, S., Harhoff, D., & Kauermann, G. (2023). Modelling the Large and Dynamically Growing Bipartite Network of German Patents and Inventors. Journal of the Royal Statistical Society, Series A: Statistics in Society, 186(3), 557-576. doi:10.1093/jrsssa/qnad009.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
externe Referenz:
https://doi.org/10.48550/arXiv.2201.09744 (Preprint)
Beschreibung:
Also published as arXiv preprint 2201.09744
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Fritz, Cornelius1, Autor
De Nicola, Giacomo 1, Autor
Kevork, Sevag1, Autor
Harhoff, Dietmar2, Autor           
Kauermann, Göran1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2MPI for Innovation and Competition, Max Planck Society, ou_2035292              

Inhalt

ausblenden:
Schlagwörter: bipartite networks, co-inventorship networks, inventors, knowledge flows, patent collaboration, temporal exponential random graph models
 Zusammenfassung: To explore the driving forces behind innovation, we analyse the dynamic bipartite network of all inventors and patents registered within the field of electrical engineering in Germany in the past two decades. To deal with the sheer size of the data, we decompose the network by exploiting the fact that most inventors tend to only stay active for a relatively short period. We thus propose a Temporal Exponential Random Graph Model with time-varying actor set and sufficient statistics mirroring substantial expectations for our analysis. Our results corroborate that inventor characteristics and team formation are essential to the dynamics of invention.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/jrsssa/qnad009
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of the Royal Statistical Society, Series A: Statistics in Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 186 (3) Artikelnummer: - Start- / Endseite: 557 - 576 Identifikator: ISSN: 0035-9238
ISSN: 0964-1998
ZDB: 204794-9