Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  networkGWAS: A network-based approach to discover genetic associations

Muzio, G., O’Bray, L., Meng-Papaxanthos, L., Klatt, J., & Borgwardt, K. (2023). networkGWAS: A network-based approach to discover genetic associations. Bioinformatics, 39(6): btad370. doi:10.1093/bioinformatics/btad370.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : networkGWAS

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Muzio, Giulia, Autor
O’Bray, Leslie, Autor
Meng-Papaxanthos, Laetitia, Autor
Klatt, Juliane, Autor
Borgwardt, Karsten1, Autor                 
Affiliations:
1Borgwardt, Karsten / Machine Learning and Systems Biology, Max Planck Institute of Biochemistry, Max Planck Society, ou_3502542              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: While the search for associations between genetic markers and complex traits has led to the discovery of tens of thousands of trait-related genetic variants, the vast majority of these only explain a small fraction of observed phenotypic variation. One possible strategy to detect stronger associations is to aggregate the effects of several genetic markers and to test entire genes, pathways or (sub)networks of genes for association to a phenotype. The latter, network-based genome-wide association studies, in particular suffers from a vast search space and an inherent multiple testing problem. As a consequence, current approaches are either based on greedy feature selection, thereby risking that they miss relevant associations, or neglect doing a multiple testing correction, which can lead to an abundance of false positive findings. To address the shortcomings of current approaches of network-based genome-wide association studies, we propose networkGWAS, a computationally efficient and statistically sound approach to network-based genome-wide association studies using mixed models and neighborhood aggregation. It allows for population structure correction and for well-calibrated p-values, which are obtained through circular and degree-preserving network permutation schemes. networkGWAS successfully detects known associations on semi-simulated common variants from A. thaliana and on simulated rare variants from H. sapiens, as well as neighborhoods of genes involved in stress-related biological processes on a stress-induced phenotype from S. cerevisiae. It thereby enables the systematic combination of gene-based genome-wide association studies with biological network information. Availability https://github.com/BorgwardtLab/networkGWAS.git Contact giulia.muzio{at}bsse.ethz.ch, karsten.borgwardt{at}bsse.ethz.ch

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-06-07
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/bioinformatics/btad370
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford University Press
Seiten: - Band / Heft: 39 (6) Artikelnummer: btad370 Start- / Endseite: - Identifikator: ISSN: 1367-4803
CoNE: https://pure.mpg.de/cone/journals/resource/954926969991