Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  reComBat: batch-effect removal in large-scale multi-source gene-expression data integration

Adamer, M. F., Brüningk, S. C., Tejada-Arranz, A., Estermann, F., Basler, M., & Borgwardt, K. (2022). reComBat: batch-effect removal in large-scale multi-source gene-expression data integration. Bioinformatics Advances, 2(1): vbac071. doi:10.1093/bioadv/vbac071.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : reComBat

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Adamer, Michael F., Autor
Brüningk, Sarah C., Autor
Tejada-Arranz, Alejandro, Autor
Estermann, Fabienne, Autor
Basler, Marek, Autor
Borgwardt, Karsten1, Autor                 
Affiliations:
1ETH Zürich, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: With the steadily increasing abundance of omics data produced all over the world under vastly different experimental conditions residing in public databases, a crucial step in many data-driven bioinformatics applications is that of data integration. The challenge of batch-effect removal for entire databases lies in the large number of batches and biological variation, which can result in design matrix singularity. This problem can currently not be solved satisfactorily by any common batch-correction algorithm.We present reComBat, a regularized version of the empirical Bayes method to overcome this limitation and benchmark it against popular approaches for the harmonization of public gene-expression data (both microarray and bulkRNAsq) of the human opportunistic pathogen Pseudomonas aeruginosa. Batch-effects are successfully mitigated while biologically meaningful gene-expression variation is retained. reComBat fills the gap in batch-correction approaches applicable to large-scale, public omics databases and opens up new avenues for data-driven analysis of complex biological processes beyond the scope of a single study.The code is available at https://github.com/BorgwardtLab/reComBat, all data and evaluation code can be found at https://github.com/BorgwardtLab/batchCorrectionPublicData.Supplementary data are available at Bioinformatics Advances online.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-10-062022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/bioadv/vbac071
ISSN: 2635-0041
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bioinformatics Advances
  Alternativer Titel : Bioinformatics Advances
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 2 (1) Artikelnummer: vbac071 Start- / Endseite: - Identifikator: -