Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.

Jelli, E., Ohmura, T., Netter, N., Abt, M., Jimenez-Siebert, E., Neuhaus, K., et al. (2023). Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates. Molecular Microbiology, 119(6), 659-676. doi:10.1111/mmi.15064.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://onlinelibrary.wiley.com/doi/10.1111/mmi.15064 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Jelli, Eric1, Autor
Ohmura, Takuya1, Autor
Netter, Niklas1, Autor
Abt, Martin1, Autor
Jimenez-Siebert, Eva1, Autor
Neuhaus, Konstantin1, Autor
Rode, Daniel K H1, Autor
Nadell, Carey D2, Autor
Drescher, Knut1, 2, Autor                 
Affiliations:
1Max Planck Research Group Bacterial Biofilms, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3390037              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacteria often grow into matrix-encased three-dimensional (3D) biofilm
communities, which can be imaged at cellular resolution using confocal
microscopy. From these 3D images, measurements of single-cell properties
with high spatiotemporal resolution are required to investigate cellular
heterogeneity and dynamical processes inside biofilms. However, the
required measurements rely on the automated segmentation of bacterial
cells in 3D images, which is a technical challenge. To improve the
accuracy of single-cell segmentation in 3D biofilms, we first evaluated
recent classical and deep learning segmentation algorithms. We then
extended StarDist, a state-of-the-art deep learning algorithm, by
optimizing the post-processing for bacteria, which resulted in the most
accurate segmentation results for biofilms among all investigated
algorithms. To generate the large 3D training dataset required for deep
learning, we developed an iterative process of automated segmentation
followed by semi-manual correction, resulting in >18,000 annotated
Vibrio cholerae cells in 3D images. We demonstrate that this large
training dataset and the neural network with optimized post-processing
yield accurate segmentation results for biofilms of different species
and on biofilm images from different microscopes. Finally, we used the
accurate single-cell segmentation results to track cell lineages in
biofilms and to perform spatiotemporal measurements of single-cell
growth rates during biofilm development.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 37066636
DOI: 10.1111/mmi.15064
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecular Microbiology
  Andere : Mol. Microbiol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Blackwell Science
Seiten: - Band / Heft: 119 (6) Artikelnummer: - Start- / Endseite: 659 - 676 Identifikator: ISSN: 0950-382X
CoNE: https://pure.mpg.de/cone/journals/resource/954925574950