Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Meta-Learned Models of Cognition

Binz, M., Dasgupta, I., Jagadish, A., Botvinick, M., Wang, J., & Schulz, E. (2024). Meta-Learned Models of Cognition. Behavioral and Brain Sciences, 47: e147. doi:10.1017/S0140525X23003266.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Urheber

einblenden:
ausblenden:
 Urheber:
Binz, M1, Autor                 
Dasgupta, I, Autor
Jagadish, AK1, Autor                 
Botvinick, M, Autor
Wang, JX, Autor
Schulz, E1, Autor           
Affiliations:
1Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Psychologists and neuroscientists extensively rely on computational models for studying and analyzing the human mind. Traditionally, such computational models have been hand-designed by expert researchers. Two prominent examples are cognitive architectures and Bayesian models of cognition. While the former requires the specification of a fixed set of computational structures and a definition of how these structures interact with each other, the latter necessitates the commitment to a particular prior and a likelihood function which - in combination with Bayes' rule - determine the model's behavior. In recent years, a new framework has established itself as a promising tool for building models of human cognition: the framework of meta-learning. In contrast to the previously mentioned model classes, meta-learned models acquire their inductive biases from experience, i.e., by repeatedly interacting with an environment. However, a coherent research program around meta-learned models of cognition is still missing to this day. The purpose of this article is to synthesize previous work in this field and establish such a research program. We accomplish this by pointing out that meta-learning can be used to construct Bayes-optimal learning algorithms, allowing us to draw strong connections to the rational analysis of cognition. We then discuss several advantages of the meta-learning framework over traditional methods and reexamine prior work in the context of these new insights.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-112024-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1017/S0140525X23003266
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Behavioral and Brain Sciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 58 Band / Heft: 47 Artikelnummer: e147 Start- / Endseite: - Identifikator: ISSN: 0140-525X
CoNE: https://pure.mpg.de/cone/journals/resource/954925341730