Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A novel neural-network architecture for continuous gravitational waves

Joshi, P. M., & Prix, R. (2023). A novel neural-network architecture for continuous gravitational waves. Physical Review D, 108: 063021. doi:10.1103/PhysRevD.108.063021.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2305.01057.pdf (Preprint), 4MB
Name:
2305.01057.pdf
Beschreibung:
File downloaded from arXiv at 2023-05-09 09:48
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PhysRevD.108.063021.pdf (Verlagsversion), 3MB
Name:
PhysRevD.108.063021.pdf
Beschreibung:
Open Access
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Joshi, Prasanna Mohan1, Autor           
Prix, Reinhard1, Autor           
Affiliations:
1Searching for Continuous Gravitational Waves, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_2630691              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: The high computational cost of wide-parameter-space searches for continuous
gravitational waves (CWs) significantly limits the achievable sensitivity. This
challenge has motivated the exploration of alternative search methods, such as
deep neural networks (DNNs). Previous attempts to apply convolutional
image-classification DNN architectures to all-sky and directed CW searches
showed promise for short, one-day search durations, but proved ineffective for
longer durations of around ten days. In this paper, we offer a hypothesis for
this limitation and propose new design principles to overcome it. As a proof of
concept, we show that our novel convolutional DNN architecture attains
matched-filtering sensitivity for a targeted search (i.e., single sky-position
and frequency) in Gaussian data from two detectors spanning ten days. We
illustrate this performance for two different sky positions and five
frequencies in the $20 - 1000 \mathrm{Hz}$ range, spanning the spectrum from an
``easy'' to the ``hardest'' case. The corresponding sensitivity depths fall in
the range of $82 - 86 / \sqrt{\mathrm{Hz}}$. The same DNN architecture is
trained for each case, taking between $4 - 32$ hours to reach matched-filtering
sensitivity. The detection probability of the trained DNNs as a function of
signal amplitude varies consistently with that of matched filtering.
Furthermore, the DNN statistic distributions can be approximately mapped to
those of the $\mathcal{F}$-statistic under a simple monotonic function.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-05-012023
 Publikationsstatus: Erschienen
 Seiten: 9 pages, 7 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2305.01057
DOI: 10.1103/PhysRevD.108.063021
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review D
  Andere : Phys. Rev. D.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lancaster, Pa. : American Physical Society
Seiten: - Band / Heft: 108 Artikelnummer: 063021 Start- / Endseite: - Identifikator: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258