Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations

Farahat, A., Effenberger, F., & Vinck, M. (2023). A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations. Neural Networks, 167, 400-414. doi:10.1016/j.neunet.2023.08.021.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Farahat_2023_ANovelFeature-scrambling.pdf (Verlagsversion), 3MB
Name:
Farahat_2023_ANovelFeature-scrambling.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Farahat, Amr1, 2, Autor
Effenberger, Felix1, 3, Autor
Vinck, Martin1, 2, Autor                 
Affiliations:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, ou_2074314              
2Vinck Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, DE, ou_3381242              
3Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, DE, ou_3381220              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer vision Object recognition Visual cortex CNNs Shape representations Texture bias
 Zusammenfassung: Convolutional neural networks (CNNs) are one of the most successful computer vision systems to solve object recognition. Furthermore, CNNs have major applications in understanding the nature of visual representations in the human brain. Yet it remains poorly understood how CNNs actually make their decisions, what the nature of their internal representations is, and how their recognition strategies differ from humans. Specifically, there is a major debate about the question of whether CNNs primarily rely on surface regularities of objects, or whether they are capable of exploiting the spatial arrangement of features, similar to humans. Here, we develop a novel feature-scrambling approach to explicitly test whether CNNs use the spatial arrangement of features (i.e. object parts) to classify objects. We combine this approach with a systematic manipulation of effective receptive field sizes of CNNs as well as minimal recognizable configurations (MIRCs) analysis. In contrast to much previous literature, we provide evidence that CNNs are in fact capable of using relatively long-range spatial relationships for object classification. Moreover, the extent to which CNNs use spatial relationships depends heavily on the dataset, e.g. texture vs. sketch. In fact, CNNs even use different strategies for different classes within heterogeneous datasets (ImageNet), suggesting CNNs have a continuous spectrum of classification strategies. Finally, we show that CNNs learn the spatial arrangement of features only up to an intermediate level of granularity, which suggests that intermediate rather than global shape features provide the optimal trade-off between sensitivity and specificity in object classification. These results provide novel insights into the nature of CNN representations and the extent to which they rely on the spatial arrangement of features for object classification.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-08-182023-10
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.neunet.2023.08.021
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Neural Networks
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 167 Artikelnummer: - Start- / Endseite: 400 - 414 Identifikator: ISSN: 08936080