English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A new approach to the operator formalism for Gromov-Witten invariants of the cap and tube

Kumaran, A. U., & Wu, L. (2023). A new approach to the operator formalism for Gromov-Witten invariants of the cap and tube. Advances in Mathematics, 435, Part A: 109357. doi:10.1016/j.aim.2023.109357.

Item is

Files

show Files
hide Files
:
2112.09180.pdf (Preprint), 774KB
Name:
2112.09180.pdf
Description:
File downloaded from arXiv at 2023-11-20 15:09
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Kumaran-Wu_A new approach to the operator formalism for Gromov-Witten invariants of the cap and tube_2023.pdf (Publisher version), 726KB
 
File Permalink:
-
Name:
Kumaran-Wu_A new approach to the operator formalism for Gromov-Witten invariants of the cap and tube_2023.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
https://doi.org/10.1016/j.aim.2023.109357 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Kumaran, Ajith Urundolil, Author
Wu, Longting1, Author                 
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Issued
 Pages: 49
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2112.09180
DOI: 10.1016/j.aim.2023.109357
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Mathematics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 435, Part A Sequence Number: 109357 Start / End Page: - Identifier: -