Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Topology recapitulates morphogenesis of neuronal dendrites

Liao, M., Bird, A. D., Cuntz, H., & Howard, J. (2023). Topology recapitulates morphogenesis of neuronal dendrites. Cell Reports, 42(11): 113268. doi:10.1016/j.celrep.2023.113268.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Liao_2023_TopologyRecapitulates.pdf (Verlagsversion), 5MB
Name:
Liao_2023_TopologyRecapitulates.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
© 2023 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
Liao, Maijia, Autor
Bird, Alex D.1, 2, Autor
Cuntz, Hermann1, 2, Autor                 
Howard, Jonathon, Autor
Affiliations:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, ou_2074314              
2Cuntz Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, DE, ou_3381227              

Inhalt

einblenden:
ausblenden:
Schlagwörter: topology dendrite morphology power law scale invariance branching
 Zusammenfassung: Highlights
• Neuronal cell types can be distinguished by the topologies of their dendritic arbors
• For many neurons, the distribution of subtree sizes is scale invariant
• Postsynaptic spines and branchlets cause deviations from scale invariance
• The subtree-size distribution reflects the underlying branching processes

Summary
Branching allows neurons to make synaptic contacts with large numbers of other neurons, facilitating the high connectivity of nervous systems. Neuronal arbors have geometric properties such as branch lengths and diameters that are optimal in that they maximize signaling speeds while minimizing construction costs. In this work, we asked whether neuronal arbors have topological properties that may also optimize their growth or function. We discovered that for a wide range of invertebrate and vertebrate neurons the distributions of their subtree sizes follow power laws, implying that they are scale invariant. The power-law exponent distinguishes different neuronal cell types. Postsynaptic spines and branchlets perturb scale invariance. Through simulations, we show that the subtree-size distribution depends on the symmetry of the branching rules governing arbor growth and that optimal morphologies are scale invariant. Thus, the subtree-size distribution is a topological property that recapitulates the functional morphology of dendrites.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-10-282023-11-28
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.celrep.2023.113268
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cell Reports
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 42 (11) Artikelnummer: 113268 Start- / Endseite: - Identifikator: ISSN: 22111247