Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration

Stocker, S., Jung, H., Csányi, G., Goldsmith, C. F., Reuter, K., & Margraf, J. (2023). Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration. Journal of Chemical Theory and Computation, 19(19), 6796-6804. doi:10.1021/acs.jctc.3c00541.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
stocker-et-al-2023-estimating-free-energy-barriers-for-heterogeneous-catalytic-reactions-with-machine-learning.pdf (Verlagsversion), 3MB
Name:
stocker-et-al-2023-estimating-free-energy-barriers-for-heterogeneous-catalytic-reactions-with-machine-learning.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Stocker, Sina1, Autor           
Jung, Hyunwook1, Autor           
Csányi, Gábor, Autor
Goldsmith, Claude Franklin1, Autor                 
Reuter, Karsten1, Autor                 
Margraf, Johannes1, Autor                 
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Predicting the rate constants of elementary reaction steps is key for the computational modeling of catalytic processes. Within transition state theory (TST), this requires an accurate estimation of the corresponding free energy barriers. While sophisticated methods for estimating free energy differences exist, these typically require extensive (biased) molecular dynamics simulations that are computationally prohibitive with the first-principles electronic structure methods that are typically used in catalysis research. In this contribution, we show that machine-learning (ML) interatomic potentials can be trained in an automated iterative workflow to perform such free energy calculations at a much reduced computational cost as compared to a direct density functional theory (DFT) based evaluation. For the decomposition of CHO on Rh(111), we find that thermal effects are substantial and lead to a decrease in the free energy barrier, which can be vanishingly small, depending on the DFT functional used. This is in stark contrast to previously reported estimates based on a harmonic TST approximation, which predicted an increase in the barrier at elevated temperatures. Since CHO is the reactant of the putative rate limiting reaction step in syngas conversion on Rh(111) and essential for the selectivity toward oxygenates containing multiple carbon atoms (C2+ oxygenates), our results call into question the reported mechanism established by microkinetic models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-05-232023-09-252023-10-10
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jctc.3c00541
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Theory and Computation
  Andere : JCTC
  Kurztitel : J. Chem. Theory Comput.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: 9 Band / Heft: 19 (19) Artikelnummer: - Start- / Endseite: 6796 - 6804 Identifikator: ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832