Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A phenomenological gravitational waveform model of binary black holes incorporating horizon fluxes

Mukherjee, S., Datta, S., Phukon, K. S., & Bose, S. (in preparation). A phenomenological gravitational waveform model of binary black holes incorporating horizon fluxes.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2311.17554.pdf (Preprint), 4MB
Name:
2311.17554.pdf
Beschreibung:
File downloaded from arXiv at 2024-01-16 10:00
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Mukherjee, Samanwaya, Autor
Datta, Sayak1, Autor           
Phukon, Khun Sang, Autor
Bose, Sukanta, Autor
Affiliations:
1Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: Subjected to the tidal field of its companion, each component of a coalescing
binary suffers a slow change in its mass (tidal heating) and spin (tidal
torquing) during the inspiral and merger. For black holes, these changes are
associated with their absorption of energy and angular momentum fluxes. This
effect modifies the inspiral rate of the binary, and consequently, the phase
and amplitude of its gravitational waveform. Numerical relativity waveforms
contain these effects inherently, whereas analytical approximants for the early
inspiral phase have to include them manually in the energy balance equation. In
this work, we construct a frequency-domain gravitational waveform model that
incorporates the effects of tidal heating of black holes. This is achieved by
recalibrating the inspiral phase of the waveform model IMRPhenomD to
incorporate the phase corrections for tidal heating. We also include
corrections to the amplitude, but add them directly to the inspiral amplitude
model of IMRPhenomD. We show that the new model is faithful, with less than 1%
mismatch, against a set of hybrid waveforms, except for one outlier that barely
breaches this limit. The recalibrated model shows mismatches of up to $\sim
16\%$ with IMRPhenomD for high mass ratios and spins. Amplitude corrections
become less significant for higher mass ratios, whereas the phase corrections
leave more impact - suggesting that the former is practically irrelevant for
gravitational wave data analysis in Advanced LIGO (aLIGO), Virgo and KAGRA.
Comparing with a set of 219 numerical relativity waveforms, we find that the
median of mismatches decreases by $\sim 4\%$ in aLIGO zero-detuned high power
noise curve, and by $\sim 2\%$ with a flat noise curve. This implies a modest
but notable improvement in waveform accuracy.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-11-29
 Publikationsstatus: Keine Angabe
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2311.17554
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: