English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Atomistic Simulations of Dislocation-Void Interactions in Concentrated Solid Solution Alloys

Vaid, A., Zaiser, M., & Bitzek, E. (2023). Atomistic Simulations of Dislocation-Void Interactions in Concentrated Solid Solution Alloys. Metals, 13(10): 1655. doi:10.3390/met13101655.

Item is

Files

show Files
hide Files
:
metals-13-01655.pdf (Publisher version), 6MB
Name:
metals-13-01655.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2023
Copyright Info:
The Authors

Locators

show

Creators

show
hide
 Creators:
Vaid, Aviral1, Author
Zaiser, Michael2, Author
Bitzek, Erik1, 3, Author           
Affiliations:
1Microstructure and Mechanics, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863344              
2Institute of Materials Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dr.-Mack-Str. 77, 90762 Fürth, Germany, ou_persistent22              
3Department of Materials Science and Engineering, Institute i, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: This paper investigates the interaction of edge dislocations with voids in concentrated solid solution alloys (CSAs) using atomistic simulations. The simulation setup consists of edge dislocations with different periodicity lengths and a periodic array of voids as obstacles to dislocation motion. The critical resolved shear stress (CRSS) for dislocation motion is determined by static simulations bracketing the applied shear stress. The results show that shorter dislocation lengths and the presence of voids increase the CRSS for dislocation motion. The dislocation–void interaction is found to follow an Orowan-like mechanism, where partial dislocation arms mutually annihilate each other to overcome the void. Solute strengthening produces a ‘friction stress’ that adds to the Orowan stress. At variance with classical theories of solute pinning, this stress must be considered a function of the dislocation line length, in line with the idea that geometrical constraints synergetically enhance the pinning action of solutes. Modifying the equation by Bacon, Kocks and Scattergood for void strengthening to account for the solute hardening in CSAs allows one to quantitatively predict the CRSS in the presence of voids and its dependency on void spacing. The predictions show good agreement with the simulation data without invoking any fit parameters.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3390/met13101655
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Metals
  Other : Metals
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Basel : MDPI AG
Pages: - Volume / Issue: 13 (10) Sequence Number: 1655 Start / End Page: - Identifier: ISSN: 2075-4701
CoNE: https://pure.mpg.de/cone/journals/resource/metals