English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata

Lombardi, L., & Schnell, C. (2024). Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata. Proceedings of the American Mathematical Society, 152(1), 137-146. doi:10.1090/proc/16625.

Item is

Files

show Files
hide Files
:
2210.01087.pdf (Preprint), 178KB
Name:
2210.01087.pdf
Description:
File downloaded from arXiv at 2024-03-21 12:58
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Lombardi-Schnell_Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata_2024.pdf (Publisher version), 203KB
 
File Permalink:
-
Name:
Lombardi-Schnell_Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata_2024.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
https://doi.org/10.1090/proc/16625 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Lombardi, Luigi, Author
Schnell, Christian1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry
 Abstract: We prove that a torsion-free sheaf $\mathcal F$ endowed with a singular hermitian metric with semi-positive curvature and satisfying the minimal extension property admits a direct-sum decomposition $\mathcal F \simeq \mathcal U \oplus \mathcal A$ where $\mathcal U$ is a hermitian flat bundle and $\mathcal A$ is a generically ample sheaf. The result applies to the case of direct images of relative pluricanonical bundles $f_* \omega_{X/Y}^{\otimes m}$ under a surjective morphism $f\colon X \to Y$ of smooth projective varieties with $m\geq 2$. This extends previous results of Fujita, Catanese--Kawamata, and Iwai.

Details

show
hide
Language(s): eng - English
 Dates: 2024
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2210.01087
DOI: 10.1090/proc/16625
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the American Mathematical Society
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 152 (1) Sequence Number: - Start / End Page: 137 - 146 Identifier: -