日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Cavity electrodynamics of van der Waals heterostructures

Kipp, G., Bretscher, H., Schulte, B., Herrmann, D., Kusyak, K., Day, M., Kesavan, S., Matsuyama, T., Li, X., Langner, S. M., Hagelstein, J., Sturm, F., Potts, A. M., Eckhardt, C., Huang, Y., Watanabe, K., Taniguchi, T., Rubio, A., Kennes, D. M., Sentef, M. A., Baudin, E., Meier, G., Michael, M., & McIver, J. W. (2024). Cavity electrodynamics of van der Waals heterostructures.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-1C04-E 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-1C05-D
資料種別: Preprint

ファイル

表示: ファイル
非表示: ファイル
:
2403.19745.pdf (プレプリント), 2MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000F-1C06-C
ファイル名:
2403.19745.pdf
説明:
File downloaded from arXiv at 2024-04-02
OA-Status:
Not specified
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
2024
著作権情報:
© the Author(s)

関連URL

表示:
非表示:
URL:
https://arxiv.org/abs/2403.19745 (プレプリント)
説明:
-
OA-Status:
Not specified

作成者

表示:
非表示:
 作成者:
Kipp, G.1, 著者           
Bretscher, H.1, 著者           
Schulte, B.1, 2, 著者           
Herrmann, D.3, 著者           
Kusyak, K.1, 2, 著者           
Day, M.1, 2, 著者           
Kesavan, S.1, 著者
Matsuyama, T.4, 著者           
Li, X.1, 著者           
Langner, S. M.1, 著者
Hagelstein, J.1, 著者
Sturm, F.2, 著者
Potts, A. M.1, 著者
Eckhardt, C.5, 6, 著者           
Huang, Y.2, 著者
Watanabe, K.7, 著者
Taniguchi, T.7, 著者
Rubio, A.8, 9, 10, 著者           
Kennes, D. M.6, 8, 著者           
Sentef, M. A.5, 11, 著者           
Baudin, E.7, 著者Meier, G.4, 著者           Michael, M.8, 著者           McIver, J. W.1, 2, 著者            全て表示
所属:
1Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3185036              
2Department of Physics, Columbia University, ou_persistent22              
3Microstructured Quantum Matter Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3336858              
4Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2074323              
5Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3012828              
6Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, ou_persistent22              
7external, ou_persistent22              
8Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
9Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, ou_persistent22              
10Nano-BioSpectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, ou_persistent22              
11Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Condensed Matter, Mesoscale and Nanoscale Physics, cond-mat.mes-hall, Condensed Matter, Strongly Correlated Electrons, cond-mat.str-el, Condensed Matter, Superconductivity, cond-mat.supr-con
 要旨: Van der Waals (vdW) heterostructures host many-body quantum phenomena that can be tuned in situ using electrostatic gates. These gates are often microstructured graphite flakes that naturally form plasmonic cavities, confining light in discrete standing waves of current density due to their finite size. Their resonances typically lie in the GHz - THz range, corresponding to the same μeV - meV energy scale characteristic of many quantum effects in the materials they electrically control. This raises the possibility that built-in cavity modes could be relevant for shaping the low-energy physics of vdW heterostructures. However, capturing this light-matter interaction remains elusive as devices are significantly smaller than the diffraction limit at these wavelengths, hindering far-field spectroscopic tools. Here, we report on the sub-wavelength cavity electrodynamics of graphene embedded in a vdW heterostructure plasmonic microcavity. Using on-chip THz spectroscopy, we observed spectral weight transfer and an avoided crossing between the graphite cavity and graphene plasmon modes as the graphene carrier density was tuned, revealing their ultrastrong coupling. Our findings show that intrinsic cavity modes of metallic gates can sense and manipulate the low-energy electrodynamics of vdW heterostructures. This opens a pathway for deeper understanding of emergent phases in these materials and new functionality through cavity control.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2024-03-28
 出版の状態: オンラインで出版済み
 ページ: 14
 出版情報: -
 目次: -
 査読: 査読なし
 識別子(DOI, ISBNなど): arXiv: 2403.19745
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: