English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Membrane nanotubes transform into double-membrane sheets at condensate droplets

Zhao, Z., Satarifard, V., Lipowsky, R., & Dimova, R. (2024). Membrane nanotubes transform into double-membrane sheets at condensate droplets. PNAS, 121(26): e2321579121. doi:doi:10.1073/pnas.2321579121.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 5MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Zhao, Ziliang1, Author           
Satarifard, Vahid2, Author                 
Lipowsky, Reinhard2, Author                 
Dimova, Rumiana3, Author                 
Affiliations:
1Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863328              
2Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              
3Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3480070              

Content

show
hide
Free keywords: tube-to-sheet transformation; double-membrane sheet; giant unilamellar vesicles (GUV); stimulated emission depletion (STED); condensate interface
 Abstract: Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid–liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.

Details

show
hide
Language(s): eng - English
 Dates: 2024-06-202024
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: doi:10.1073/pnas.2321579121
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PNAS
  Other : Proceedings of the National Academy of Sciences of the United States of America
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 121 (26) Sequence Number: e2321579121 Start / End Page: - Identifier: ISSN: 0027-8424