English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Membrane nanotubes transform into double-membrane sheets at condensate droplets

MPS-Authors
/persons/resource/persons230489

Zhao,  Ziliang
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons204558

Satarifard,  Vahid       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121584

Lipowsky,  Reinhard       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121236

Dimova,  Rumiana       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zhao, Z., Satarifard, V., Lipowsky, R., & Dimova, R. (2024). Membrane nanotubes transform into double-membrane sheets at condensate droplets. PNAS, 121(26): e2321579121. doi:doi:10.1073/pnas.2321579121.


Cite as: https://hdl.handle.net/21.11116/0000-000F-7966-7
Abstract
Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid–liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.