Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Membrane nanotubes transform into double-membrane sheets at condensate droplets

Zhao, Z., Satarifard, V., Lipowsky, R., & Dimova, R. (2024). Membrane nanotubes transform into double-membrane sheets at condensate droplets. PNAS, 121(26): e2321579121. doi:doi:10.1073/pnas.2321579121.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 5MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhao, Ziliang1, Autor           
Satarifard, Vahid2, Autor                 
Lipowsky, Reinhard2, Autor                 
Dimova, Rumiana3, Autor                 
Affiliations:
1Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863328              
2Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              
3Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3480070              

Inhalt

einblenden:
ausblenden:
Schlagwörter: tube-to-sheet transformation; double-membrane sheet; giant unilamellar vesicles (GUV); stimulated emission depletion (STED); condensate interface
 Zusammenfassung: Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid–liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-06-202024
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: doi:10.1073/pnas.2321579121
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PNAS
  Andere : Proceedings of the National Academy of Sciences of the United States of America
  Andere : Proceedings of the National Academy of Sciences of the USA
  Kurztitel : Proc. Natl. Acad. Sci. U. S. A.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 121 (26) Artikelnummer: e2321579121 Start- / Endseite: - Identifikator: ISSN: 0027-8424