Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Enhancing corrosion-resistant alloy design through natural language processing and deep learning

Sasidhar, K. N., Hamidi Siboni, N., Mianroodi, J. R., Rohwerder, M., Neugebauer, J., & Raabe, D. (2024). Enhancing corrosion-resistant alloy design through natural language processing and deep learning. Science Advances, 9(32): eadg7992. doi:10.1126/sciadv.adg7992.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
sciadv.adg7992.pdf (Verlagsversion), 2MB
Name:
sciadv.adg7992.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sasidhar, Kasturi Narasimha1, Autor           
Hamidi Siboni, Nima2, 3, Autor           
Mianroodi, Jaber Rezaei4, 5, Autor           
Rohwerder, Michael6, Autor           
Neugebauer, Jörg7, Autor           
Raabe, Dierk1, Autor           
Affiliations:
1Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
2Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max Planck Institute for Sustainable Materials GmbH, Max Planck Society, ou_3243050              
3DeepMetis, Lohmühlenstraße 65, 12435 Berlin, Germany, ou_persistent22              
4Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3243050              
5Ergodic Labs, Lohmühlenstraße 65, 12435, Berlin, Germany, ou_persistent22              
6Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2074315              
7Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We propose strategies that couple natural language processing with deep learning to enhance machine capability for corrosion-resistant alloy design. First, accuracy of machine learning models for materials datasets is often limited by their inability to incorporate textual data. Manual extraction of numerical parameters from descriptions of alloy processing or experimental methodology inevitably leads to a reduction in information density. To overcome this, we have developed a fully automated natural language processing approach to transform textual data into a form compatible for feeding into a deep neural network. This approach has resulted in a pitting potential prediction accuracy substantially beyond state of the art. Second, we have implemented a deep learning model with a transformed-input feature space, consisting of a set of elemental physical/chemical property?based numerical descriptors of alloys replacing alloy compositions. This helped identification of those descriptors that are most critical toward enhancing their pitting potential. In particular, configurational entropy, atomic packing efficiency, local electronegativity differences, and atomic radii differences proved to be the most critical. Deep learning frameworks utilizing experimental data enhance machine comprehension related to metallic corrosion.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-08-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1126/sciadv.adg7992
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : This work was supported by the Max-Planck Gesellschaft
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
  Kurztitel : Sci. Adv.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington : AAAS
Seiten: 12 Band / Heft: 9 (32) Artikelnummer: eadg7992 Start- / Endseite: - Identifikator: ISSN: 2375-2548
CoNE: https://pure.mpg.de/cone/journals/resource/2375-2548