Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Full minimal coupling Maxwell-TDDFT: an ab initio framework for light-matter phenomena beyond the dipole approximation

Bonafé, F., Albar, E. I., Ohlmann, S. T., Kosheleva, V., Bustamante, C., Troisi, F., et al. (2024). Full minimal coupling Maxwell-TDDFT: an ab initio framework for light-matter phenomena beyond the dipole approximation.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2409.08959v2.pdf (Preprint), 9MB
Name:
2409.08959v2.pdf
Beschreibung:
Downloaded from arXiv.org: 2024-10-17
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
© the Author(s)

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/2409.08959 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Bonafé, F.1, 2, Autor           
Albar, E. I.1, 2, Autor           
Ohlmann, S. T.3, Autor
Kosheleva, V.1, 2, Autor           
Bustamante, C.1, 2, Autor           
Troisi, F.1, 2, Autor           
Rubio, A.1, 2, 4, Autor           
Appel, H.1, 2, Autor           
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Center for Free-Electron Laser Science, ou_persistent22              
3Max Planck Computing and Data Facility, ou_persistent22              
4Center for Computational Quantum Physics (CCQ), The Flatiron Institute, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Condensed Matter, Mesoscale and Nanoscale Physics, cond-mat.mes-hall
 Zusammenfassung: We report the first ab initio, non-relativistic QED method that couples light and matter self-consistently beyond the electric dipole approximation and without multipolar truncations. This method is based on an extension of the Maxwell-Pauli-Kohn-Sham approach to a full minimal coupling Hamiltonian, where the space- and time-dependent vector potential is coupled to the matter system, and its back-reaction to the radiated fields is generated by the full current density. The implementation in the open-source Octopus code is designed for massively-parallel multiscale simulations considering different grid spacings for the Maxwell and matter subsystems. Here, we show the first applications of this framework to simulate renormalized Cherenkov radiation of an electronic wavepacket, magnetooptical effects with non-chiral light in non-chiral molecular systems, and renormalized plasmonic modes in a nanoplasmonic dimer. We show that in some cases the beyond-dipole effects can not be captured by a multipolar expansion Hamiltonian in the length gauge. Finally, we discuss further opportunities enabled by the framework in the field of twisted light and orbital angular momentum, inelastic light scattering and strong field physics.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-09-13
 Publikationsstatus: Online veröffentlicht
 Seiten: 41
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Keine Begutachtung
 Identifikatoren: arXiv: 2409.08959
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: