Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries

MPG-Autoren

Porter,  Edward
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0706.0114v2.pdf
(Preprint), 490KB

prd76_104002.pdf
(Verlagsversion), 763KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Porter, E. (2007). A New Template Family For The Detection Of Gravitational Waves From Comparable Mass Black Hole Binaries. Physical Review D, 76(10): 104002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-4794-9
Zusammenfassung
In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various re-summation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on re-expressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion : The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all PN orders and have excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the Last Stable Orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.