Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mechanical Q-factor measurements on a test mass with a structured surface

MPG-Autoren

Bunkowski,  Alexander
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Tünnermann,  Andreas
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

njp7_7_225.pdf
(Verlagsversion), 369KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nawrodt, R., Zimmer, A., Koettig, T., Clausnitzer, T., Bunkowski, A., Kley, E.-B., et al. (2007). Mechanical Q-factor measurements on a test mass with a structured surface. New Journal of Physics, 9: 225. doi:10.1088/1367-2630/9/7/225.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-49B4-F
Zusammenfassung
We present mechanical Q-factors (quality factors) of a crystalline quartz test mass with a nano-structured surface, measured in the temperature regime from 5 to 300 K. The nano-structure was a grating with a period of 2 μm and a depth of about 0.1 μm. Comparative measurements were performed on the plain substrate and on the structured test mass with different numbers of SiO2/Ta2O5 coating layers. The measurements at different stages of the test mass fabrication process show that the surface distortion induced by the nanostructure does not severely lower the mechanical Q-factor of the substrate. Damping due to a multi-layer coating stack was found to be orders of magnitude higher. The results provide vital information concerning the potential usage of low-thermal noise nano-structured test masses in future generations of high-precision laser interferometers and in current attempts to measure quantum effects of macroscopic mirror oscillators.