Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

MPG-Autoren
/persons/resource/persons20705

Dittrich,  Bianca
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20719

Thiemann,  Thomas
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0411140.pdf
(Preprint), 390KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dittrich, B., & Thiemann, T. (2006). Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models. Classical and Quantum Gravity, 23(4), 1089-1120.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-4AF0-E
Zusammenfassung
This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an $SL(2,\Rl)$ gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order $\hbar^2$ which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to $\hbar$ normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction.