Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Lazarus project : A pragmatic approach to binary black hole

MPG-Autoren

Baker,  John G.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Campanelli,  Manuela
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Lousto,  Carlos O.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2718.pdf
(Verlagsversion), 603KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Baker, J. G., Campanelli, M., & Lousto, C. O. (2002). The Lazarus project: A pragmatic approach to binary black hole. Physical Review D, 65: 044001.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-5531-7
Zusammenfassung
We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and non-linear treatments near the interface. Once the merically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl scalar $psi_4$ and its time derivative $partial_tpsi_4$ with both objects being first order coordinate and tetrad invariant. The Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use of improved full numerical evolutions and outline the approach to a full understanding of astrophysical black hole binary systems which we can now pursue.