Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Global properties of gravitational lens maps in a Lorentzian manifold setting


Perlick,  Volker
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 326KB

Supplementary Material (public)
There is no public supplementary material available

Perlick, V. (2001). Global properties of gravitational lens maps in a Lorentzian manifold setting. Communications in Mathematical Physics, 220(2), 403-428.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-5629-F
In a general-relativistic spacetime (Lorentzian manifold), gravitational lensing can be characterized by a lens map, in analogy to the lens map of the quasi-Newtonian approximation formalism. The lens map is defined on the celestial sphere of the observer (or on part of it) and it takes values in a two-dimensional manifold representing a two-parameter family of worldlines. In this article we use methods from differential topology to characterize global properties of the lens map. Among other things, we use the mapping degree (also known as Brouwer degree) of the lens map as a tool for characterizing the number of images in gravitational lensing situations. Finally, we illustrate the general results with gravitational lensing (a) by a static string, (b) by a spherically symmetric body, (c) in asymptotically simple and empty spacetimes, and (d) in weakly perturbed Robertson-Walker spacetimes.