Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Instantous and unitarity in quantum cosmology with fixed four-volume

MPG-Autoren

Louko,  Jorma
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

9805101v2.pdf
(Preprint), 352KB

Phy.Rev.D.58.084008.pdf
(Verlagsversion), 305KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Daughton, A., Louko, J., & Sorkin, R. D. (1998). Instantous and unitarity in quantum cosmology with fixed four-volume. Physical Review D, 58(8): 084008. doi:10.1103/PhysRevD.58.084008.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-5928-C
Zusammenfassung
We find a number of complex solutions of the Einstein equations in the so-called unimodular version of general relativity, and we interpret them as saddle points yielding estimates of a gravitational path integral over a space of almost everywhere Lorentzian metrics on a spacetime manifold with topology of the "no-boundary" type. In this setting, the compatibility of the no-boundary initial condition with the definability of the quantum measure reduces reduces to the normalizability and unitary evolution of the no-boundary wave function \psi. We consider the spacetime topologies R^4 and RP^4 # R^4 within a Taub minisuperspace model with spatial topology S^3, and the spacetime topology R^2 x T^2 within a Bianchi type I minisuperspace model with spatial topology T^3. In each case there exists exactly one complex saddle point (or combination of saddle points) that yields a wave function compatible with normalizability and unitary evolution. The existence of such saddle points tends to bear out the suggestion that the unimodular theory is less divergent than traditional Einstein gravity. In the Bianchi type I case, the distinguished complex solution is approximately real and Lorentzian at late times, and appears to describe an explosive expansion from zero size at T=0. (In the Taub cases, in contrast, the only complex solution with nearly Lorentzian late-time behavior yields a wave function that is normalizable but evolves nonunitarily, with the total probability increasing exponentially in the unimodular "time" in a manner that suggests a continuous creation of new universes at zero volume.) The issue of the stability of these results upon the inclusion of more degrees of freedom is raised.