English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A gradient of ROR2 protein stability and membrane localization confers brachydactyly type B or Robinow syndrome phenotypes

MPS-Authors
/persons/resource/persons50542

Schwarzer,  Wibke
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50646

Witte,  Florian
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50437

Mundlos,  Stefan
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50578

Stricker,  Sigmar
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwarzer, W., Witte, F., Rajab, A., Mundlos, S., & Stricker, S. (2009). A gradient of ROR2 protein stability and membrane localization confers brachydactyly type B or Robinow syndrome phenotypes. Human Molecular Genetics, 18(21), 4013-4021. doi:10.1093/hmg/ddp345.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-7CDE-F
Abstract
Mutations in ROR2 cause dominant brachydactyly type B (BDB1) or recessive Robinow syndrome (RRS), each characterized by a distinct combination of phenotypic features. We here report a novel nonsense mutation in ROR2 (c.1324C>T; p.R441X) causing intracellular protein truncation in a patient exhibiting features of RRS in conjunction with severe recessive brachydactyly. The mutation is located at the same position as a previously described frame shift mutation causing dominant BDB1. To investigate the apparent discrepancy in phenotypic outcome, we analysed ROR2 protein stability and distribution in stably transfected cell lines expressing exact copies of several human RRS and BDB1 intracellular mutations. RRS mutant proteins were less abundant and retained intracellularly, although BDB1 mutants were stable and predominantly located at the cell membrane. The p.R441X mutation showed an intermediate pattern with membrane localization but also high endoplasmic reticulum retention. Furthermore, we observed a correlation between the severity of BDB1, the location of the mutation, and the amount of membrane-associated ROR2. Membrane protein fraction quantification revealed a gradient of distribution and stability correlating with the clinical phenotypes. This gradual model was confirmed by crossing mouse models for RRS and BDB1, yielding double heterozygous animals that exhibited an intermediate phenotype. We propose a model in which the RRS versus the BDB1 phenotype is determined by the relative degree of protein retention/ degradation and the amount of mutant protein reaching the plasma membrane.