English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

de Bernardo, S., Canals, S., Casarejos, M., Solana, R., Menendez, J., & Mena, M. (2004). Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. Journal of Neurochemistry, 91(3), 667-682. doi:10.1111/j.1471-4159.2004.02744.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-D763-E
Abstract
To date, glutathione (GSH) depletion is the earliest biochemical alteration shown in brains of Parkinson‘s disease patients, but the role of GSH in dopamine cell survival is debated. In this study we show that GSH depletion, produced with GSH synthesis inhibitor, l-buthionine-(S,R)-sulfoximine (BSO), induces selectively neuronal cell death in neuron/glia, but not in neuronal-enriched midbrain cultures and that cell death occurs with characteristics of necrosis and apoptosis. BSO produces a dose- and time-dependent generation of reactive oxygen species (ROS) in neurons. BSO activates extracellular signal-regulated kinases (ERK-1/2), 4 and 6 h after treatment. MEK-1/2 and lipoxygenase (LOX) inhibitors, as well as ascorbic acid, prevent ERK-1/2 activation and neuronal loss, but the inhibition of nitric oxide sintase (NOS), cyclo-oxygenase (COX), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) does not have protective effects. Co-localization studies show that p-ERK-1/2 expression after BSO treatment increased in astrocytes and microglial cells, but not in neurons. Selective metabolic impairment of glial cells with fluoroacetate decreased ERK activation. However, blockade of microglial activation with minocycline did not. Our results indicate that neuronal death induced by GSH depletion is due to ROS-dependent activation of the ERK-1/2 signalling pathway in glial cells. These data may be of relevance in Parkinson‘s disease, where GSH depletion and glial dysfunction have been documented.