Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Solvent-mediated folding in dicarboxylate dianions: aliphatic chain length dependence and origin of the IR intensity quenching

MPG-Autoren
/persons/resource/persons22231

Wende,  Torsten
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22028

Rubio,  Angel
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21310

Asmis,  Knut R.
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

c3cp52824c.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wanko, M., Wende, T., Saralegui, M. M., Jiang, L., Rubio, A., & Asmis, K. R. (2013). Solvent-mediated folding in dicarboxylate dianions: aliphatic chain length dependence and origin of the IR intensity quenching. Physical Chemistry Chemical Physics, 15(47), 20463-20472. doi:10.1039/C3CP52824C.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-631D-D
Zusammenfassung
We combine infrared photodissociation spectroscopy with quantum chemical calculations to characterize the hydration behavior of microsolvated dicarboxylate dianions, (CH2)m(COO-)2·(H2O)n, as a function of the aliphatic chain length m. We find evidence for solvent-mediated folding transitions, signaled by the intensity quenching of the symmetric carboxylate stretching modes, for all three species studied (m = 2, 4, 8). The number of water molecules required to induce folding increases monotonically with the chain length and is n = 9–12, n = 13, and n = 18–19 for succinate (m = 2), adipate (m = 4), and sebacate (m = 8), respectively. In the special case of succinate, the structural transition is complicated by the possibility of bridging water molecules that bind to both carboxylates with merely minimal chain deformation. On the basis of vibrational calculations on a set of model systems, we identify the factors responsible for intensity quenching. In particular, we find that the effect of hydrogen bonds on the carboxylate stretching mode intensities is strongly orientation dependent.