English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The MIS12 complex is a protein interaction hub for outer kinetochore assembly

MPS-Authors
/persons/resource/persons15011

Dube,  P.
Research Group of 3D Electron Cryo-Microscopy, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15857

Stark,  H.
Research Group of 3D Electron Cryo-Microscopy, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons98714

Musacchio,  Andrea
Abt. I:Mechanistische Zellbiologie, Max Planck Institute of Molecular Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Petrovic, A., Pasqualato, S., Dube, P., Krenn, V., Santaguida, S., Cittaro, D., et al. (2010). The MIS12 complex is a protein interaction hub for outer kinetochore assembly. JOURNAL OF CELL BIOLOGY, 190(5), 835-852. doi:10.1083/jcb.201002070.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-3AD8-B
Abstract
Kinetochores are nucleoprotein assemblies responsible for the attachment of chromosomes to spindle microtubules during mitosis. The KMN network, a crucial constituent of the outer kinetochore, creates an interface that connects microtubules to centromeric chromatin. The NDC80, MIS12, and KNL1 complexes form the core of the KMN network. We recently reported the structural organization of the human NDC80 complex. In this study, we extend our analysis to the human MIS12 complex and show that it has an elongated structure with a long axis of similar to 22 nm. Through biochemical analysis, cross-linking-based methods, and negative-stain electron microscopy, we investigated the reciprocal organization of the subunits of the MIS12 complex and their contacts with the rest of the KMN network. A highlight of our findings is the identification of the NSL1 subunit as a scaffold supporting interactions of the MIS12 complex with the NDC80 and KNL1 complexes. Our analysis has important implications for understanding kinetochore organization in different organisms.