Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electron-spin dynamics induced by photon spins

MPG-Autoren
/persons/resource/persons37673

Ahrens,  Sven
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30283

Bauke,  Heiko
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons37929

Grobe,  Rainer
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, IL 61790–4560 USA ;

Externe Ressourcen
Volltexte (frei zugänglich)

1401.5976.pdf
(Preprint), 575KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahrens, S., Bauke, H., Keitel, C. H., & Grobe, R. (2014). Electron-spin dynamics induced by photon spins. New Journal of Physics, 16(10): 103028. doi:10.1088/1367-2630/16/10/103028.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-0246-1
Zusammenfassung
Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, that can be expressed in terms of the lase's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron's spin with the laser's rotating magnetic field and with the laser's spin density counteract each other in such a way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the laser's electric field strength depending on if relativistic corrections are taken into account or not. Thus, the relativistic coupling of the electron's spin to the laser's spin density changes the dynamics not only quantitatively but also qualitatively as compared to the nonrelativistic theory. The electron's spin dynamics is a genuine quantum mechanical relativistic effect.