English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae

MPS-Authors
/persons/resource/persons26091

Ott,  C. D.
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons145564

Haas,  R.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20669

Reisswig,  C.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4338

Moesta,  P.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons26173

Schnetter,  E.
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1409.7078.pdf
(Preprint), 5MB

APJ808_70.pdf
(Any fulltext), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Abdikamalov, E., Ott, C. D., Radice, D., Roberts, L. F., Haas, R., Reisswig, C., et al. (2015). Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae. The Astrophysical Journal, 808(1): 70. doi:10.1088/0004-637X/808/1/70.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0025-B8CF-E
Abstract
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a $27$-$M_\odot$ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI dominated evolution. This confirms previous 3D results of Hanke et al. 2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out simulations with resolutions differing by up to a factor of $\sim$4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case, since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum $E(\ell)$ develops in the heating layer. Like other 3D studies, we find $E(\ell) \propto \ell^{-1}$ in the "inertial range," while theory and local simulations argue for $E(\ell) \propto \ell^{-5/3}$. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy containing scale, creating a "bottleneck" that prevents an efficient turbulent cascade.