Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae

MPG-Autoren
/persons/resource/persons26091

Ott,  C. D.
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons145564

Haas,  R.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20669

Reisswig,  C.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4338

Moesta,  P.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons26173

Schnetter,  E.
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1409.7078.pdf
(Preprint), 5MB

APJ808_70.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abdikamalov, E., Ott, C. D., Radice, D., Roberts, L. F., Haas, R., Reisswig, C., et al. (2015). Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae. The Astrophysical Journal, 808(1): 70. doi:10.1088/0004-637X/808/1/70.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0025-B8CF-E
Zusammenfassung
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a $27$-$M_\odot$ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI dominated evolution. This confirms previous 3D results of Hanke et al. 2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out simulations with resolutions differing by up to a factor of $\sim$4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case, since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum $E(\ell)$ develops in the heating layer. Like other 3D studies, we find $E(\ell) \propto \ell^{-1}$ in the "inertial range," while theory and local simulations argue for $E(\ell) \propto \ell^{-5/3}$. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy containing scale, creating a "bottleneck" that prevents an efficient turbulent cascade.