English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Statistical inference with the Elliptical Gamma Distribution

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hosseini, R., Sra, S., Theis, L., & Bethge, M. (2016). Statistical inference with the Elliptical Gamma Distribution. Computational Statistics & Data Analysis, 101, 29-43.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-7FC9-2
Abstract
This paper studies mixture modeling using the Elliptical Gamma distribution (EGD)---a distribution that has parametrized tail and peak behaviors and offers richer modeling power than the multivariate Gaussian. First, we study maximum likelihood (ML) parameter estimation for a single EGD, a task that involves nontrivial conic optimization problems. We solve these problems by developing globally convergent fixed-point methods for them. Next, we consider fitting mixtures of EGDs, for which we first derive a closed-form expression for the KL-divergence between two EGDs and then use it in a ''split-and-merge'' expectation maximization algorithm. We demonstrate the ability of our proposed mixture modelling in modelling natural image patches.