Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Molecular Adsorption Changes the Quantum Structure of Oxide-Supported Gold Nanoparticles: Chemisorption versus Physisorption

MPG-Autoren
/persons/resource/persons41517

Stiehler,  Christian
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons79433

Calaza,  Florencia
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons84699

Schneider,  Wolf-Dieter
Chemical Physics, Fritz Haber Institute, Max Planck Society;
Ecole Polytechnique Fédérale de Lausanne;

/persons/resource/persons21916

Nilius,  Niklas
Chemical Physics, Fritz Haber Institute, Max Planck Society;
Carl von Ossietzky Universität;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.115.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stiehler, C., Calaza, F., Schneider, W.-D., Nilius, N., & Freund, H.-J. (2015). Molecular Adsorption Changes the Quantum Structure of Oxide-Supported Gold Nanoparticles: Chemisorption versus Physisorption. Physical Review Letters, 115(3): 036804. doi:10.1103/PhysRevLett.115.036804.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-BD02-C
Zusammenfassung
STM conductance spectroscopy and mapping has been used to analyze the impact of molecular adsorption on the quantized electronic structure of individual metal nanoparticles. For this purpose, isophorone and CO2, as prototype molecules for physisorptive and chemisorptive binding, were dosed onto monolayer Au islands grown on MgO thin films. The molecules attach exclusively to the metal-oxide boundary, while the interior of the islands remains pristine. The Au quantum well states are perturbed due to the adsorption process and increase their mutual energy spacing in the CO2 case but move together in isophorone-covered islands. The shifts disclose the nature of the molecule-Au interaction, which relies on electron exchange for the CO2 ligands but on dispersive forces for the organic species. Our experiments reveal how molecular adsorption affects individual quantum systems, a topic of utmost relevance for heterogeneous catalysis.