English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Wildfires in a warmer climate: Emission fluxes, emission heights and black carbon concentrations in 2090-2099

MPS-Authors
/persons/resource/persons136934

Veira,  Andreas
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons62455

Lasslop,  Gitta
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37207

Kloster,  Silvia
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Veira, A., Lasslop, G., & Kloster, S. (2016). Wildfires in a warmer climate: Emission fluxes, emission heights and black carbon concentrations in 2090-2099. Journal of Geophysical Research-Atmospheres, 121, 3195-3223. doi:10.1002/2015JD024142.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-3F0E-A
Abstract
Global warming is expected to considerably impact wildfire activity and aerosol emission release in the future. Due to their complexity, the future interactions between climate change, wildfire activity, emission release, and atmospheric aerosol processes are still uncertain. Here we use the process-based fire model SPITFIRE within the global vegetation model JSBACH to simulate wildfire activity for present-day climate conditions and future Representative Concentration Pathways (RCPs). The modeled fire emission fluxes and fire radiative power serve as input for the aerosol-climate model ECHAM6-HAM2, which has been extended by a semiempirical plume height parametrization. Our results indicate a general increase in extratropical and a decrease in tropical wildfire activity at the end of the 21st century. Changes in emission fluxes are most pronounced for the strongest warming scenario RCP8.5 (+49% in the extratropics, −37% in the tropics). Tropospheric black carbon (BC) concentrations are similarly affected by changes in emission fluxes and changes in climate conditions with regional variations of up to −50% to +100%. In the Northern Hemispheric extratropics, we attribute a mean increase in aerosol optical thickness of +0.031±0.002 to changes in wildfire emissions. Due to the compensating effects of fire intensification and more stable atmospheric conditions, global mean emission heights change by at most 0.3 km with only minor influence on BC long-range transport. The changes in wildfire emission fluxes for the RCP8.5 scenario, however, may largely compensate the projected reduction in anthropogenic BC emissions by the end of the 21st century.