Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 

Freigegeben

Zeitschriftenartikel

Many-body Green’s function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer

MPG-Autoren
/persons/resource/persons85158

Peng,  Yang
Theory, Fritz Haber Institute, Max Planck Society;
Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin;

/persons/resource/persons21304

Appel,  Heiko
Theory, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Struktur und Dynamik der Materie;
European Theoretical Spectroscopy Facility (ETSF);

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1507.04726v1.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Säkkinen, N., Peng, Y., Appel, H., & van Leeuwen, R. (2015). Many-body Green’s function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer. The Journal of Chemical Physics, 143(23): 234102. doi:10.1063/1.4936143.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-CF86-4
Zusammenfassung
We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximations published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system.